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1'. 0 SUMMARY ABSTRACT 

mperiments leading t o  design parameters for a urine 

e l ec t ro lys i s  module have been performed. 

that in te rmi t ten t  operation of t he  electrodes or in te rmi t ten t  

exposure of the ur ine t o  continuously operating electrodes y i e lds  

t h e  best current effciencies .  Using a 3 min on - 6 min off cycle 

at 1 .2  amps/cm2 and 0.05 amps/ml, an 85% c w r e n t  e f f ic iency  has been 

obtained . 

These experiments ind ica te  

Two module d.esigns are  offered u t i l i z i n g  p la t in ized  

platfnum electrodes.  me electrode arrangerneri~ envisioned places 

a P t  wire anode conceKtrfcally wi th in  a P t  perforated cylinder 

cathode, with a 0 .2  cn? annulus. 

1 

The prci'erred module design u t i l i z e s  a centr i fugal  

pump t o  c i r c u l a t e  t he  urine within the  e l ec t ro lys i s  module. 

module i s  comprised of an e l ec t ro lys i s  chamber, a react ion chamber, a 

gas-liquid phase separator and of course a cent r i fuga l  pump. 

The 

When t h i s  module i s  operating at peak eff ic iency t h e  

e l e c t r o l y s i s  alone w i l l  consume 2.767 kilowatt-hours per s i x  l i t e r  

batch of average urine.  

7.73 hours. 

six hour process which i s  theore t ica l ly  possible.  

The time required for t h i s  process i s  

This  i s  in comparison t o  1.674 kilowatt-hours f o r  t h e  

Analyses of t he  gases evolved during t h e  e l e c t r o l y s i s  

of r e a l  and "complex" synthetic ur ine show the C02& r a t i o  =ti- 

clpated for urea oxidation. 

undergoes e l e c t r o l y t i c  oxidation less e f f i c i e n t l y  than t h e  synthet ic  

urine.  

They a l so  ind ica t e  that  r e a l  urine 

A coliform bac ter ia  assay of raw urine and the  same 

urine a f t e r  e l e c t r o l y s i s  showed both t o  be e s sen t i a l ly  f r e e  of 

coliform bac ter ia .  

-1- 



t 

2.0 INTRODUCTION 

This report d e t a i l s  the three month program t o  develop 

parameters f o r  t he  design of a ur ine e l ec t ro lys i s  module. 

It had been previously demonstrated that it i s  

possible t o  completely de-n i t r i fy  human ur ine by e l e c t r o l y t i c  means. 

This f e a t  was accomplished, however, with only a 40-45s current 

efficiency. (See t h e  report  for t he  period September 7, 1962 t o  

March 7, 1964 "Water Recovery Study" on Contract NASw-520.)  

The basic motivation of t h i s  program then, was t o  

study t h e  e l e c t r o l y s i s  of urine from t h e  standpoint of optimizing the 

current and energy eff:Lcieccies. 

-2- 



c 3.0. BACKGROUND DISCUSSION 

Preliminary t o  any program t o  develop design parameters 

for t h e  construction of t he  urine e lec t ro lys i s  module it i s  w e l l  t o  

del ineate  t h e  f ac to r s  involved i n  the process. 

Since it is  desirable  t o  minimize t h e  power require- 

ments f o r  t he  process, one m a y  delineate these f ac to r s  as they a f f ec t  

the ac tua l  power requirements i n  comparison t o  the  theo re t i ca l  power 

requirement. 

3 .1  Theoretical Power Requirements 

The theo re t i ca l  power requirements m a y  be calculated 

from the  stoichiometry of the reactions and the  composition of an 

average urine.  

Average w i n e  contains : 

0.417 moles of urea / l i t e r  

0.01 n:olas of other  oxidizable o rgmic  spec ies / l i t e r .  

The oxfdation of urea by hypochlorite is represented 

and ca. 

by: 

(1) NH2 CO::,;z + 3 O C l '  - C02 + 2H20 + N2 + 3Cl' 
So it i s  seen that t h e  oxidation of each mole of urea requires th ree  

moles of hypochlorite ion. 

organic species require  ca. 11 moles of hypochlorite per mole. The 

t o t a l  hypochlorite demand then is:  

The major components of the  remaining 

(2) 0.417 x 3 = 1.251 

0.01 x 11 = 0.11 

1.361 moles Oc1' 

The electrode reactions are:  

anode : 2~1- - ~ 1 2  + 2e' 

cathode: a120 = 2e' I 20" + H2 

-3- 



we react ion between chlorine gas and hydroxyl ion may be wri t ten as: 

C12 -k 20H- C1- -?r OC1’ + H2C. 

So it can be seen that each mole of hypochlorite produced requires  

the passage of 2 Faradays. 

A l i t e r  of  average urine then requires:  

2F/mole x 1.361 moles/liter = 2.722 F / l i t e r  

Since a Faraday i s  equivalent t o  26.81 ampere-hours, 
(5) 

and t h e  theo re t i ca l  voltage of t he  hydrogen-chlorine c e l l  i s  

1.728 vol ts ,  the theore t ica l  energy requirement f o r  the  e lec t ro-  

l y s i s  is: 

( 6 )  2.722 F x 1.728 V x 26.81 AH/F = 126 watt-hrs/liter 

If it i s  assumed that t h e  e l ec t ro lys i s  i s  t o  require 
126 wat t -hrs / l i t e r  - 21,0 watts/ s i x  hours, t he  power requirement i s  

l i t e r .  
6 hrs 

3.2 Actual Power Requirements 

Let us now consider the var iables  tha t  e f f ec t  t h e  power 

consumption o f t h e  real process. For discussion purposes these may 

be broken down i n t o  two categories; those variables e f fec t ing  the 

voltage requirements and those effect ing the  current efficiency. T h i s  

breakdown i s  shown in Table 1.0. 

3.2.1 Voltage Factors 

3.2.1.1 pH 
The voltage o f  t he  hydrogen electrode ( the  cathode) 

depends upon the pH as 

(7) EH = -0.059 x (pH) 

The voltage then becomes lower as the  solut ion i s  made 

more ac id ic .  

Acid conditions, however, do not favor hypochlorite 

formation. S l igh t ly  a lka l ine  conditfons a re  instead preferred.  

-4- 



. Thus, the hydrogen electrode voltage under ideal 

conditions f o r  hypochlorite formation then i s  i n  t h e  area of, 

(8) % = (-)0.059 x 8 3: (-)0.472 v 
With real urine, t he  unadjusted pH is i n  t he  range of 5.0 - 6.0 pH 

uni t s .  

fore  w i l l  i n i t i a l l y  average % = ( - )0 .59  x 5.5 = -0.325 V. 

The theo re t i ca l  hydrogen electrode (cathode) voltage there-  

3.2.1.2 N a C 1  and C12 Concentrations 
~ _ _ _ ~  

3.2.1.2.1 The Effect on Ec12 

The e f f ec t  the concentration of  N a C l  and dissolved C12  

have on t h e  theo re t i ca l  po ten t ia l  of t h e  chlorine electrode (anode) 

are calculable v i a  t h e  following equation and assumptions. 

( 9 )  Ec12 = (Eo)C12 + 0.030 log Ac12 - 0.059 log AC1- 

(1) where Eo = +1.358 V, t h e  a c t i v i t y  coef f ic ien ts  a r e  

equal t o  unity.  

(2) Azslune the i n i t i a l  C 1 2  concentration i s c  .007 ppm. 

Since the s o l u b i l i t y  of C 1 2  i s  7 gm/liter a t  1 atmosphere of C12  

pressure, 0.007 ppm i s  i n  equilibrium with atm. of C12 gas. 

The'cir a c t i v i t y  i n  average urine is  approximately 
- 4  

0 . 1 7 1 N .  

i n i t i a l  concentration of C12, we find tha t  t h e  theo re t i ca l  i n i t i a l  

chlor ine electrode voltage is; 

(10) 

Using the ti-ace concentration f igure of 0.007 g / l i t e r  as t h e  

EC12 = 1.358 V + 0.03 log - 0.059 log 0.171, 

Ec12 = 1.358 + D . 0 3  x (-6u - 0.059 (-0.767) 

Ec12 = 1.358 - 0.18 + ( .059) (0.767) 

Ec12 = 1.223 V ( f o r  average urine) 

- 5- 



After the c e l l  i s  i n  operation fo r  a f i n i t e  time, especial ly  a t  high 

current dens i t ies ,  t he  electrode w i l l  "see" e s sen t i a l ly  a saturated 

solut ion of C12. The electrode poten t ia l  can then rise to :  

(11) E'C12 = + 1.358 + 0.045 

E'C12 = 1.403 V 

3.2.1.2.2 Solution Resistance and N a C l  Concentration 

The N a C l  concentration and t h e  spec i f ic  res i s tance  of 

real ur ine  var ies  qu i t e  widely. 

For a given electrode configuration and a given 

current density, the  voltage drop due t o  t he  solut ion res i s tance  w i l l  

vary proportionally t o  the  spec i f ic  res is tance.  

3.2.1.3 - Current Density 

As has been indicated,  t h e  higher t he  current densi ty  

f o r  a given electrode configuration and a given urine,  t h e  higher 

w i l l  be the power reqi.tlrement due t o  increased solut ion I R  drop and 

polar izat ion.  Further, as has also been indicated, the  theo re t i ca l  

anode po ten t i a l  i s  ind i r ec t ly  dependent upon the  current density. 

Higher current dens i t i e s  producing higher dissolved chlorine gas 

concentrations. 

3.2.1.4 Electrode Spacing 

The effect  of electrode spacing upon c e l l  res i s tance  

i s  s e l f  evident i n  t h e  equation for solution resis tance,  R =/81/A 

where "1" is  the distance between electrodes. Pwther, electrodes 

spaced too  c lose  may exhibit  inordinately high res i s tances  because 

of gas entrainment. 

3.2.1.5 Ternperat ure  

Since the resis tance of e l ec t ro ly t e s  decreases wi th  

increasing temperature, higher temperatures lead t o  lowered voltage 

requirements due t o  the lowered solution I - R  drop. 
-6- 



3.2.2 Current Efficiency Factors 

In  discussing the  fac tors  that a f f e c t  current 

eff ic iency we must consider not only t h e  eff ic iency of hypochlorite 

production but also t he  f ac to r s  that a f f e c t  t he  react ion between 

hypochlorite and t he  organic species. 

3.2.2.1 pH 
The production of hypochlorite i s  most e f f i c i e n t  under 

mildly a lka l ine  conditions. Under these conditions there  a r e  an 

abundance of hydroxyl ions immediately avai lable  t o  react  w i t h  all of 

the chlorine being generated a t  the  anode. 

3.2.2.2 Current Density 

High current dens i t i t es ,  0.1 t o  1 .0  amps/cm2, a r e  

recommended for the production of hypochlorite. 

3.2.2.3 Electrode S p a c i q  

That electrode spacing i s  an important f ac to r  is 

readily demonstrated. Electrodes spaced extremely far apart (1 inch 

t o  2 inches) y ie ld  e s sen t i a l ly  no hypochlorite formation as most of 

t h e  chlor ine gas generated escapes before it can react  with the  

hydroxyl ions generated a t  the  cathode. 

Conversely, too close a spacing could lead t o  mixing 

of t h e  chlor ine gas from t h e  anode with hydrogen from t he  cathode. 

This would r e s u l t  i n  production of HC1 rather than production of HOCL. 

3.2.2.4 Temperature 

Moderately low temperatures favor the formation of 

Temperatures i n  t h e  range of 50°C favor t he  formation hypochlorite. 

of chlorate  ion. High temperatures should however, favor t he  hypo- 

c h l o r i t e  oxidation of urea, e t c . ,  through the lowering of the 

s o l u b i l i t y  of C02  and other product gases. 
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I ' 3 . 2 . 3  Turbulence i r  

I In  general, ag i ta t ion  tends t o  lower the  e f f ic iency  

1 of hypochlorite production, as it sweeps hypochlorite ions past the  

cathode where they can be reduced by atomic hydrogen. 

The overal l  efficiency, on t h e  other  hand, from the  

point of view of the oxidation of the organic components of urine,  

should be aided by vigorous mixing. 
1 
, 
I 3.2.3.1 Reaction Rates 

Unless the reactions between the  hypochlorite ion and 

the  organic components a r e  instantaneous, any process i n  which current 

i s  continuously supplied, will be ine f f i c i en t .  Hypochlorite not 

immediately consumed i n  the  oxidation of urea, etc . ,  w i l l  be avail- 

able  for t h e  e l e c t r o l y t i c  conversion t o  the inef fec t ive  chlorate  ion. 

This can be a l l ev ia t ed  by intermit tent  operation of the c e l l  or by 

in te rmi t ten t  exposure of urine t o  the electrodes i n  a c i rcu la t ing  

system. 

c h l o r i t e  formed t o  react  completely with the  organic species. 

1 

In t h i s  manner, suf f ic ien t  time can be allowed f o r  the  hypo- 

The reaction should a l so  be speeded up by u t i l i z i n g  

That is, there  exists an optimum con- t h e  "break-point" condition. 

centrat ion . r a t i o  of hypochlorite t o  reductant, at which the oxidation 

react ion proceeds most rapidly, t h i s  r a t i o  i s  ca l led  the "break-point" . 
These conditions can be maintained by adding t h e  urine slowly t o  t h e  

electrode chamber which i n i t i a l l y  contains a sal t  solut ion.  

t o  adding any urine, a current is passed f o r  a predetermined time a 

selected hgpochlorite concentration may be established. 

If, p r i o r  

If t h e  ur ine 

is then added at a r a t e  such that t h e  consumption of hypochlorite 

equals the formation of  hypochlorite, the  desired hypochlorite con- 

cent ra t ion  may be maintained. 
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, 

, In the continuous process, poor efficiency may arise 
I from too slow a urine addition rate. If the urine is added too 

slowly, the excess hypochlorite is available for conversion to 

chlorate. If it is added too rapidly, on the other hand, one of 

course does not have sufficient hypochlorite available to oxidize 

a l l  of the organic materials present even if the cell efriciently 

produces hypochlorite. 
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4.0 

4.1 

EXPERIMENTAL RESULTS AND DISCUSSION 

Study of t h e  Variation i n  S a l t  Content i n  
Representative Samples of Urine 

The conductivity of  various f resh  ur ine  samples 

col lected among the  male members o f t h e  staff a t  d i f f e ren t  times of 

the day were measured. The resis tances  and the sodium chlor ide con- 

centrat ion they represent are l i s t e d  i n  Table 2.0. 

4.1.1 Effect of N a C l  Concentration Variation i n  C e l l  Voltage 

4.1.1.1 Anode Voltage and Cell Voltage 

As may be seen i n  Table 2.0 and Figure 2.0 the  k t  
content of r e a l  ur ine can vary widely, a t  l e a s t  ranging from 0.265 N 

t o  0.140 N. 

voltage.  Due t o  t h i s  chlor ide concentration var ia t ion  the  i n i t i a l  

This introduces var ia t ion i n  the  theore t ica l  anode 
I 

anode voltage may range from 1.228 t o  1.212 V. 

af ter  the  c e l l  has operated su f f i c i en t ly  long t o  produce an envelope 

of C12  sa turated solut ion around the anode w i l l  rise, and range from 

The anode voltage 

a t  least 1.392 v t o  1.408 TV'. 

With r e a l  ur ine t h e  average theore t ica l  c e l l  po ten t ia l  

a t  the high current dens i t i e s  (without pH adjustment) w i l l  be: 

( 12) Ecel1 = 1.403 - ( -0 .325)  

= 1.728 v 
4.1.1.2 Solution I - R  Drop and Cell  Voltage 

The percent var ia t ion i n  the  solut ion I . R .  drop due 

t o  the  var ia t ion  i n  N a C l  concentration may be roughly estimated i n  

the following manner. 

(13) 

(14) 
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Then from Table 2.0: 

(15) Elower = k(O.492) = 34.3% below average. 

Ehigher = k(0.934) = 24.5% above the average. 

Assume tha t :  (a) the 6 hour ur ine conversion rate i s  

the required rate (b )  the  desired current densi ty  i s  0.5 amp cm2, and 

(e )  the electrode spacing i s  0.2 cm. 

Then s ince 73.0 AH.liter i s  the required number of 

faradays : 

= current required. 
6 h r s  

(16) 

The electrode area (x) w i l l  be: 

o r  X = 24.4 em2 

and :. ESoln = (‘2) (12.2) 
24.4 

= E  - - (iii 
A” 

soln 

E 

E 

= 0.750(1/10) = 0.075 V 

= 0.934(1/10) = 0.0934 V 
Solnaver 

Solnt,,aX 
4.2 Electrode Materials and Polar izat ion 

Figure 1.0 shows a p l o t  i f  1 vs. E f o r  two c e l l s  of 

widely var iant  configuration and of d i f fe ren t  mater ia ls  (platinum 

and carbon using a NaCl solut ion of the approximate average concen- 

t r a t i o n  encountered i n  ur ine.  

The in te rcepts  on the voltage axis show that  t h e  

operating voltage of both cells i s  on t h e  order of 3.0 V. The 

e f f ec t ive  polar izat ion poten t ia l  i s  then approximately 1.3 V f o r  both 
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.platinum and carbon electrodes.  

t he  e l ec t ro lys i s  module because carbon electrodes are  more f r a g i l e  

and a l s o  tend t o  flake-off during operation.) 

(Platinum, however, w i l l  be used i n  

If t h e  c e l l  were t o  operate at t h e  working voltage of 

3.0 V and assuming 100% current efficiency w e  f ind  that the  power 

requirement f o r  the  s i x  hour r a t e  i s  a t  best  36.5 watts per l i t e r .  

4.2.1 Depolarized Cathode 

It should be possible t o  operate t h e  cathode of the 

e l e c t r o l y s i s  c e l l  as an oxygen depolarized electrode. This would be 

a porous electrode through which an oxygen stream would be passed a* 

a r a t e  j u s t  suf f ic ien t  t o  combine with a l l  atomic hydrogen produced 

at t h e  electrode-electrolyte  interface.  

on t h e  electrode would thus be avoided and t he  electrode would not 

polar ize .  

The formation of a gas f i l m  

The c e l l  operating voltage may be reduced by upwards 

of one half of t he  polar izat ion poten t ia l .  

4.3 Investigation of t he  Effect of Inter-Electrode Spacing 
and Current Density on C e l l  Voltage 

Using the  variable spacing t h e  c e l l  shown ir. Figure 3.0, 

a study was made t o  determine i f  there  are any abnormal voltage 

requirements due t o  gas entrainment when small inter-electrode 

spacings a r e  employed. 

The data shown graphically i n  Figure 4.0 were obtained 

during t h e  e l e c t r o l y s i s  of a synthetic ur ine i n  the  var iable  spacing 

c e l l .  

densi ty  curves 

4.3.1 

No abnormalities were observed i n  the  voltage-current 

over t h e  range of inter-electrode spacings studied. 

Influence on Cell  Design 

The curves shown i n  Figure 4.0 corroborate t h e  
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i n t u i t i v e  conclusions tha t  the power requirements are minimized when 

the  c e l l  spacings and current densi t ies  are minimized. The best 

current e f f ic ienc ies  obtained on t h i s  program were as w i l l  be see.: 

i n  the following sections,  obtained using a current densi ty  s l i g h t l y  

g rea t e r  than 1.0 amp/cm2 

4.4 Early Urine Electrolyses Ut i l iz ing  "Break-Point" 
Conditions 

Early experiments u t i l i z i n g  the continuous addi t ion 

"break-point" c e l l  (see Figure 5.0) gave r e s u l t s  that were at  the  

time extremely encouraging. See for example Figure 6.0. 

Experiments i n  which the r a t e s  of addi t ion were varied 

( see  Table 3.0) indicated that there  exis ted an optimum r a t i o  of free 

chlor ine concentration r e l a t i v e  t o  oxidizable mater ia ls  concentration 

at which the  rate of oxidation would be maximized. 

4.5 Study of t he  E f f e c t  of the  Absolute Concentration and 
the Concentration Ratios of Hypochlorite and Urine 
Components Upon the  Rate of Oxidation 

To study these factors,  a s e r i e s  of experiments was 

designed u t i l i z i n g  commercial bleach and a synthet ic  average ur ine 

containing urea, uric acid, creat inine and hippuric acid.  

T h i s  s e r i e s  of experiments d i d  not serve t o  disclose 

the  optimum hypochloi-ite/urine r a t i o .  It d id  however uncover a 

ser ious problem w i t h  the  indo-phenol method of the  nitrogen analyses. 

4.5.1 The UnrelFabili ty o f t h e  Indo-Phenol Method of 
Nitrogen Analysis 

The attempts t o  analyze the  commercial bleach-synthetic 

ur ine  n i x t u r e s  revealed a basic  problem w i t h  the indo-phenol ni t rogen 

analysis .  

report  dated April  15, 1965 - NASw-520.) 

i n t e n s i t y  of  the color developed i n  the sample was a function of t h e  

(For a descr ipt ion of the method see "Water Recovery Study': 

It was found that the  

-13- 



hypochlorite concentration of t h e  sample as well as the urea-nitrogen 

concentration. 

ch lo r i t e ,  r e su l t i ng  i n  erroneously high nitrogen analyses. 

The color  i n t ens i ty  increased w i t h  increasing hypo- 

P , r t h e r  invest igat ion showed the  method t o  be sens i t ive  

t o  p H  and a l s o  t o  depend upon the  point at which t h e  samples a re  

di luted.  T h i s  i s  because the  analysis i s  designed t o  d i r e c t l y  

measure only very low-nitrogen concentrations. Nitrogen concen- 

t r a t i o n s  above t h i s  range r e s u l t  i n  the development of color  inten- 

s i t i e s  beyond the  range of t he  Bausch & Lomb Colorimeter use2 i n  t h e  

analysis .  It i s  n e c e s s z y  then t o  d i lu t e  t he  sample t o  t he  readable 

range. It had been stzndard pract ice  t o  perform t h i s  d i lu t ion  a f t e r  

t h e  color  development. 

low r e s u l t s .  

st art ed. 

T h i s  pract ice  i s  now known t o  give erroneously 

Dilutions must be made before the  urease digestion i s  

The r e s u l t s  i n  Table 3.0 and represented i n  6.0 cannot 

be d i r e c t l y  ruled out becauaa of d i lu t ion  e r ro r s  as these pa r t i cu la r  

analyses d i d  not undergo any improper d i lu t ions .  They are  however 

i n  doubt because no pH adjustments or hypochlorite concentration 

adjustments were considered. 

It was thus necessary t o  change over t o  the Kjehldahl 

nitrogen ana ly t i ca l  procedure. 

4.5.2 The KJehldahl Nitrogen Analysis 

It 1s desirable  t o  analyze samples of electrolyzed 

ur ine  as quickly as possible a f t e r  they a re  generated. 

We selected the  Fisher-Micro-Kjehldahl apparatus, and 

technique modified as described below, 

4.5.2.1 General Procedure 

The Kjehldahl method of  analysis  i s  u s e h l  f o r  t he  

determinations of a l l  organic nitrogen other  than n i t r o  or ni t roso  

nitrogen. 
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In  essence, t he  process involves a catalyzed digestion 

w i t h  sulf’uric acid which converts a l l  organic nitrogen t o  ammonium 

s u l f a t e  v i a  reaction (I) .  
cuso,. 

4 .  (I) O r g - N  + €I2 SO4 (”&  SO^ G e tc .  cat alysZ 
The ammonium s u l f a t e  i s  then converted t o  f r e e  ammonia and d i s t i l l e d  

from t h e  bas ic  react ion medium. 

The ammonia d i s t i l l e d  o f f  i s  trapped i n  e i t h e r  d i l u t e  su l fur ic  or 

boric  acids and i s  then e i t h e r  back t i t ra ted or d i r e c t l y  t i trated as 

the  choice of trapping agent d ic ta tes .  

4.5.2.2 Procedure and Apparatus as Modified 

A 0 .1  - 5.0 ml sample of t h e  urea-containing solut ion 

i s  placed i n  a 100 m l  flask and digested with 5 m l  concentrated 

su l fu r i c  acid by boi l ing gent ly  i n  the  presence of 3.5g %SO4 and 

50 mg CuS04. 

1/4 t o  1 hour have been found t o  be necessary. 

Three h o w s  f o r  digestion rather than the  recommended 

After digestion, the solution i s  cooled and 40 r n l  of 

d i s t i l l e d  water added; t h e  solut ion is  then made basic by the 

addi t ion of 20 m l  of a 66% NaOH solution. 

The liberated ammonla i s  then d i s t i l l e d  t o  the 

co l lec t ing  vessel  which contains the  ammonia trapping solutlon. 

apparatus as purchased i s  provided with a steam generator t o  allow 

steam d i s t i l l a t i o n  of t h e  ammonia, 

condensation of moisture occurred i n  t he  top  of t he  d i s t i l l i n g  flask 

and i n  the  sect ion of the  apparatus leading t o  the condensor. 

The 

It was found that  excessive 

Ammonia held up i n  t h i s  condensate was causing low 

Wrapping th i s  portion of t h i s  apparatus w i t h  ana ly t i ca l  r e s u l t s .  

heating tape resul ted i n  an improvement. Consistent, s a t i s f ac to ry  
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. r e su l t s ,  however, were not obtained u n t i l  we resorted t o  a d i r ec t  

d i s t i l l a t i o n i n  combination with t h e  use of the heat ing tape .  

The d i s t i l l e d  ammonia is  col lected by trapping it i n  a 

The ammonia content of t h i s  solut ion is then 4% Boric acid solut ion.  

determlned by d i r ec t  t i t r a t i o n  w i t h  ca. 0.01N hydrochloric acid using 

t h e  mixed indicator ,  bromocresol green - methyl red.  This indicator  

gives a very sharp end point at( pH = 5.1). 

4.6 Electrolysis  of Real Urine Using the Continuous 
Addition "Break-Point" Method (Kjehldahl Analyses 
Used f o r  Nitrogen Determination) 

4.6.1 Extended Operation 

A f resh sample of rea: ur ine was d i lu ted  w i t h  0.2M N a C l  

t o  make a 10s urine solut ion.  T h i s  solut ion was used as the  feed 

stock f o r  the operation of t he  e lec t ro lys i s  c e l l  shown i n  Figure 5.0. 

As i n  a l l  p r i o r  experiments w i t h  t h i s  c e l l ,  the electrode chamber 

was i n i t i a l l y  f i l l ed  vrith 30 m l  of 0.2M N a C l  solut ion.  
The current used was again 0.5 amp (0.5 amp/cm 2 i n  t h i s  

case) .  

5 m l  sample was withdrawn every 5 minutes. 

of 2ddition of ur ine on a undiluted basis was therefore  6 rnl/hr. 

The r a t e  of addi t ion o f  t he  feed stock was 60 m l h r  and a 

The corresponding r a t e  

A s  indfcated i n  Table 4.0 the feed stock N content was 

1390 pprn N, or 13,900 pprn N on t h e  undiluted basis. 

Assuming a d i r ec t  proport ional i ty  t o  t h e  ampere hour 

requirements f o r  average urine, one l i t e r  of  t h i s  ur ine (undiluted) 

would require  80.9 ampere hours. Theoretically then at  0.5 amps, 

t h i s  c e l l  shmld be capable of handling 6.18 m l  of t h i s  pa r t i cu la r  

ur ine  per hour, i f  it were 100% e f f i c i en t .  

97% of 
6.0 
6.18 

The actual  rate of addition then was - = 

t heo re t i ca l .  
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The c e l l  was operated a t  0.5 amps, adding feedstock 

solut ion a t  60 ml/hr (6.0 m l  urine/hr) f o r  150 minutes removing 5 ml 

al iquots  every 5 minutes, 

The data l i s t ed  i n  Table 4.0 were calculated i n  the 

following manner. 

4.6.1.1 Calculation of the Maximum Possible Nitrogen Con- 
centrat ion i n  the  C e l l  a t  any Time, Assuming Zero 
Cell  Efficiency 

The concentration of N i n  t h e  cell.. a f t e r  each addi t ion 

has been made i s  calculated from: 
c v - + c v  

where C1 = N concentration of t h e  solut ion added 

V1 = volume of  t he  solut ion added 

C2 = N concentration o f  t he  solut ion i n  the  c e l l  before 

the addi t ion 

V2 = volume of the solutfon i n  the  cell before the 

addition. 

In  our c e l l ;  a t  the s tar t  o f  the  operation 

c* = 0 

V1 = 5 r n l  

V2 = 30 m l  

and i n  t h i s  instance; 

C1 = 1390 ppm M. 

The maxiinurn poss ib le  N concentration of the first 

removed al iquot  then i s  
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After 10 minutes the  maximum possible  N concentration 

a t h e  second al iquot  sample removed: 

Using t h i s  method, the concentration a t  each successive 

point i s  calculatable .  This data i s  shown graphical ly  i n  Figure 7.0. 

Overall C e l l  Efficiency af ter  150 Minutes of Operation 

From Figure 7.0 we see that  at the  150 minute mark the  

4.6.1.2 

maximum possible  N content of the  c e l l  (zero eff ic iency)  i s  0.99 C1. 

In  t h i s  pa r t i cu la r  case then t h i s  would be 

0.99 x 1390 - 1376 ppm. 

Since w e  are adding urine a t  97% of the  Theoretical  

M a x i m u m  addi t ion ra te ,  there should a t  no t i m e  be any nitrogen pre- 

sent  i n  the c e l l ,  i f  it i s  100% e f f i c i en t .  

The overal l  c e l l  eff ic iency then is: 

4.6.1.3 Comments on the  Ekperirnent 

It was predicted that operation of the continuous 

addi t ion c e l l  a t  less than theore t ica l  rate of addition would prove 

i n e f f i c i e n t .  

This has been demonstrated by t he  fac t  that  the overal l  

c e l l  eff ic iency dropped from 54% a f t e r  ninety minutes t o  3% a f t e r  

100 minutes indicates  t ha t  t he  use o f  addi t ion rates even as high as 

9776 has a marked e f f ec t  on c e l l  eff ic iency a f t e r  extended periods of 

operation. 

4.7 The Batch-Wise Electrolysis  of Real Urine Using the  
Intermit tent  Current Technique 

A series of experiments, designed t o  determine i f  
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t he re  i s  (1) a benefit  t o  be gained by in te rmi t ten t  c e l l  operation 

and (2) i f  the re  i s  an optimum cycling regimen, were carr ied out. 

Table 5 .O tabulates  the experimental conditions used and Figure 8.0 

i s  a diagram of t he  c e l l .  

* 

The experimental data  and calculated current e f f ic ien-  

c i e s  a re  tabulated i n  Table 6.0. 

4.7.1 Calculation of Current Ef f ic ienc i  e8 

The experimental data i n  Table 6.0 were used t o  

ca lcu la te  t h e  current e f f i c i enc ie s  in the  following mauner. 

Assume again tha t  the  ampere-hour requirement f o r  t h e  

complete e l e c t r o l y t i c  conversion of a r e a l  batch of urine i s  d i r e c t l y  

proportional t o  that  calculated f o r  the average ur ine.  

batch of ur ine had a nitrogen content of 13,010 ppm N the  ampere- 

hours required per l i t e r  a r e  81,33 A.H./liter, o r  4e80 ampere 

minutes/l i ter .  

employed. 

30 m l  samples then i s  146.4 a.m. 

Since t h i s  

In  t h i s  s e r i e s  of experiments 30 m l  samples were 

The theo re t i ca l  number of ampere-minutes required f o r  t h e  

For each experiment, then the maximum possible percent 

decrease i n  nitrogen content then is: 

Actual amp min 
146.4 (4  Nymeoretical = 

For example i n  experiment D of t h i s  s e r i e s  the  

maximum percent decrease i n  nitrogen content i s  from Table 6.0 

The ac tua l  percent decrease i n  nitrogen however was 

from Table 6.0, 76.0$. The current eff ic iency of the c e l l  then was: 

- - N$ Actual 
N$ Theoretical 

Current Efficiency = 

- - - 76 0 x 100 = 84.5$G85$ 
89.8 
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,4.7.2 Comments 

It i s  in t e re s t ing  t o  note that t h e  b e t t e r  r e su l t s ,  i n  

terms of current eff ic iency were obtained when the ' 'off" time was 

long r e l a t i v e  t o  the  "on" time. 

This indica tes  that  instantaneous oxidation of' the 

organic components d e f i n i t e l y  does not occur. 

It is likely that optimizakion of t he  current e f f i c i en -  

cy i s  possible  th ru  fu r the r  invest igat ion of cycling regimens. 

Table 7.0 l is ts  some of t h e  p H  data recorded during 

The cycl ical  var ia t ion  of t h e  pH seems t o  experiments A, B, C and D. 

follow t h e  production and coizsumption of NaOCl. 

4.8 Complete Chemical Analyses and Bacteriological Assay 
of Raw and Electrolyzed Real Urine 

A 60 ml sample of real ur ine ( R A I  Kjehldahl N = 

13,050 ppm) was electrolyzed i n  the  c e l l  shown i n  Figure 8.0. 

t h i s  cell, t h e  volume of solut ion used r e s u l t s  i n  exactly twice t h e  

exposed anode as was used i n  the experiments In Section 4.7. Thus, 

when 3.0 amps are supplied t o  the  ce l l ,  the  current density and 

current/ml ur lne a re  the same as i n  the experiments described i n  

Table 5.0. 

In  

The cycling regime selected f o r  the  experiment was that 

of experiment D, Table 6.0. 

of 85% observed i n  experiment D, Table 6.0 and the  Kjehldahl N 

analysis of t h e  ur ine batch used i n  th i s  experiment, t h e  calculated 

accumulated "on" time required t o  completely destroy t h e  organic 

species  i n  60 m l  of t h i s  ur ine at 3 amps i s  115 minutes. 

Upon the basis of t h e  current e f f ic iency  

The c e l l  was operated f o r  a t o t a l  accumulated "on" time 

T h i s  is 285 above the 115 minutes it was anticipated of 147 minutes. 

t o  require .  The solut ion at 147 minutes was f r e e  of a l l  detectable  
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, odor other than chlorine and was the  pale straw color  of commercial 

N a O C l  Bleach. 

It should be noted here that t h i s  m dif fered  from 

experiment D, Table 5.0 i n  that  it was necessary t o  shut the c e l l  

down overnight after the  accumulation of 120 minutes of "on" time. 

Our i n i t i a l  KJehldahl analysis showed a f i n a l  N content of 0 ppm. 

Consequently, samples of  both the raw urine and t h e  
I 

electrolyzed urine (147 min) were sent out for fu r the r  chemical 

analyses, and samples of raw and electrolyzed ur ine were also sent 

out f o r  a bacter iological  assay, these r e s u l t s  a r e  shown i n  Table 8.0. 

Repeat Xjehldahl analyses of the electrolyzed urine 

I using considerably larger samples, however, showed a residual  nitrogen 

content of 735 ppm. 

T h i s  corresponds t o  a 94% decrease i n  N content, and 

a current eff ic iency of only 63%. 

4.8.1 Comments on the  Low Current Efficiency Obtained 

The low current efficiency demonstrated i n  t h i s  experi- 

ment as compared t o  the  85% efficiency found i n  experiment D of 

Table 5.0 and 6.0 may be due t o  one o r  a i l  of t he  following factors :  

(a) the  eff ic iency obtained may d i f f e r  from urine 

sample t o  ur ine  sample because of var ia t ions i n  the concentrations of 

minor components. 

(b) The eff ic iency may well f a l l  off as the  concen- 

t r a t i o n  of oxidizable materials decreases. 

( c )  The overnight shut  down period mentioned i n  

Section 4.8 may have altered the  efficiency but t h i s  does not appear 

t oo  l i ke ly .  

It would seem that (a) and (b) above are the most 

l i ke ly  causes of t he  lowered efficiency. If (b)  i s  t h e  cause a 
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Variable cycling regimen may be required t o  maintain high current 

eff ic iencies ,  u t i l i z i n g  b r i e fe r  "on" periods and higher "off/on" 

r a t i o s  as the e l ec t ro lys i s  progresses. 

4.9 Collection and Analysis of the Gases Evolved Durirq 
the Electrolysis  of Urine, Real and Synthetic 

Figure 9.0 i s  a diagram of the system used t o  co l l ec t  

the gases evolved during the  e lec t ro lys i s  of ur ine.  

The c e l l  was operated using both real and synthet ic  

urine.  T h i s  experiment was performed p r i o r  t o  the s e r i e s  of experi- 

ments described i n  Section 4.7 and hence did not u t i l i z e  intermit tent  

operation. 

The col lect ion vessels  had a volume of 250 m l .  In 

order t o  ensure t he i r  being w s l l  swept of atmospheric gases the  c e l l  

was loaded w i t h  a suf f ic ien t  charge o f  ur ine t o  evolve approximately 

2 l i t e r s  of gas a t  S.T.P. 

The c c i l  was operated su f f i c i en t ly  long t o  generate 

The gas samples 1.25 l i ters before the sample chamber w a s  sealed.  

col lected from both r e a l  and synthet ic  ur ine were sent out for a 

mass-spectrographic analysis .  

The data reported are  presented i n  Table 9.0. 

The data I n  Table 9.0 bear comment on several  points .  

(a) The immediate observation t o  be made is  tha t  the  

volume percent ( L e .  mole $) of nitrogen i s  equal t o  the  volume per- 

cent of carbon dioxide i n  both the real and the synthet ic  ur ine gas 

samples. T h i s  i s  as ant ic ipated i f  the major source of  these gases 

i s  urea. 

(b)  The r a t i o  of (C02 + N2)/H2 i s  theore t ica l ly  

0.834/1.361 = 0.613. 
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The actual  r a t i o s  found are:  

Synthetic urine; - 39*0  - - 0.661 
59.0 

and r e a l  urfne; = 0.471 
62 

T h i s  would indicate,  within experimental error ,  t h a t  

100% eff ic iency i s  obtained with t he  synthet ic  ur ine and approximately 

75% eff ic iency was obtained w i t h  t he  r e a l  urine.  

agreement with the  eff ic iency obtained i n  experiment A of Tables 5.0 

and 6.0. 

This i s  i n  f a i r  

( c )  The presence of a g rea t e r  amount of oxygen i n  t h e  

r e a l  ur ine gas sample is  believed t o  be ind ica t ive  of a lower 

u t i l i z a t i o n  r a t e  f o r  t he  hypochlorite i n  the  urea oxidation. T h i s  

would r e s u l t  i n  a depletion of available chloride ion and r e s u l t  i n  

t h e  e l e c t r o l y s i s  of water. 

(d) Although chlorine gas i s  readi ly  detectable  both 

by odor and the  strong ac id ic  reaction of moistened pH paper exposed 

to t h e  anode gases, no f r e e  chlorine was found by mass spectrographic 

analysis .  

(e )  The higher volume of hydrocarbons, and the higher 

mass of these hydroca-bons, found i n  r e a l  u r ine  gases i s  i n  l i n e  with 

an t ic ipa ted  r e su l t s .  

than those i n  our synthetic is  acknowledged and i s  indicated by t h e  

color,  odor and foaming of r e a l  urine during e l ec t ro lys i s .  

The presence o f  organic compounds more complex 
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PRELIMINARY DESIGN SPECIFICATIONS FOR THE 

ELECTROLYSIS MODULE 

Based on presently available information, spec i f i -  

cat ions for a preliminary design of the e l e c t r o l y s i s  module have 

been made. 

5.1 

5.1.1 

5.1.2 

Mat e r i  a1 s 

Electrodes 

Platinized Platinum 

Elec t ro lys i s  Chamber and Associated Plumbing 

Titanium 

5 - 2  Design Parameters 

5.2.1 Inter-electrode Spacing: 0 .2  cm 

5.2.2 Current Density: 1 amp/cm2 

5.2.3 Ra t io  of .- anode area/Solution Volume: 1.25 crn2/30 m l  

5.3 Elec t rc lys i s  Process 

The in te rmi t ten t  current process has been selected on 

the basis of the  85% current efficiency obtained. 

5.3.l Cgcling Regimen: 3 rnin on 6 min off. 
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6.0 TENTATIT3 MODULE DESIGNS 

Based upon the  prelitnlnary design speciffcat ions two 

t e n t a t i v e  ur ine  e l ec t ro lys i s  module designs f o r  a four-man 6 l i t e r /day  

system a r e  offered. Both designs make use o f  t he  same electrode uni t .  

6.1 Electrode Configuration Common t o  All Module Designs 

A p la t in ized  platinum wire 0.16 cm i n  diameter serves 

This  anode i s  arranged concentrically within a per- as t h e  anode. 

forated p la t in ized  platinum cyl indrical  cathode whose i . d .  i s  0.56 cm 

and whose 0 .d .  i s  0.58 em. 

Every 2.5 om length of t h i s  concentric electrode 

assembly i s  assigned a ur ine  volume of 30 ml. 

cat ions 5.2.1 and 5.2.3. 

T h i s  meets spec i f i -  

Figure 10.0 i s  a diagram of a 2.5 cm long electrode 

assembly segment. 

6.2 Non-Cii-culating ..- System 

Figure 11.0 shows a diagram of an e l ec t ro lys i s  system 

i n  which the e l e c t r o l y s i s  chamber holds t h e  e n t i r e  6 l i t e r s  of urine. 

In t h i s  system, t h e  current cycling i s  achieved electronical ly ,  f o r  

example, by use of a square wave generator. 

The u l t ra -v io le t  lamp reac tor  shown i n  Figure 11.0 

(and 13.0) i s  necessary t o  destroy any residual  hypochlorite i n  t h e  

eff luent  stream. 

dangerously high leve ls  of NaOCl  i n  t he  u l t r a f i l t r a n d  during the  

u l  t r a f i l  t rat ion. 

This s tep  i s  used t o  avoid the development of  

The e l ec t ro lys i s  chamber i s  a cylinder, whose ins ide  

dimensions are 15.65 cm diameter by 31.25 cm t a l l .  

The chamber contains an ar ray  of s ixteen electrode 

assemblies each 31.25 cm long spaced equally apart on t h e  centers.  

See Figure 12.0. 
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. 6.2.1 Advantages of the System 

The advantage t o  the system i s  that  the pressure due 

t o  gases generated by the  e lec t ro lys i s  and urea decomposition m a y  

possibly be used t o  empty the  c e l l  at t he  end of t he  e l ec t ro lys i s .  

The same driving force would of course be u t i l i z e d  t o  

force t h e  electrolyzed ur ine through the gas-liquid phase separator,  

and i n t o  the u l t r a f i l t r a t i o n  modules reservoir .  

6.2.2 Disadvantages of the System 

There are several  disadvantages inherent t o  t h i s  system. 

F i r s t  of a l l ,  the system w i l l  have t o  operate under 

In  order that the  electrodes remain covered, there can zero gravi ty .  

be l i t t l e  o r  no f r e e  space i n  t h e  e lec t ro lys i s  chamber t o  allow for 

the  gas volume generated. 

A t  an assumed c e l l  temperature of 60°C t he  volume of 

gas evolved i n  the  complete e lec t ro lys i s  of 6 l i t e r s  of ur ine would 

be about 360 l i t e r s .  

Allowing even a l i t e r  of  free volume i n  the c e l l ,  the 

pressure developed would be a t  least 360 atmospheres (ca .  5,300 p s i ) .  

Not only does t h i s  pressure introduce a weight penal ty  

due t o  the r equ i s i t e  strengthening o f  the  chamber walls. It further 

not only makes seal ing more of  a problem but a l so  raises the  

s o l u b i l i t y  of' t he  gaseous products considerably. 

would have the react ion equilibrium i s  not completely known. 

The e f f ec t  t h i s  

In tu i t i ve ly ,  however, one would expect t h i s  e f fec t  t o  be detrimental ,  

cer ta inly,  the  pH would be lowered. 

In  addi t ion t o  t h e  foregoing, it i s  not a t  al l  ce r t a in  

that gas pressure can be used t o  empty the c e l l  under weightless 

conditions.  

mixture m a y  well r e s u l t  merely i n  expansion o f  the  mixture as a foam. 

Releasing the  pressure on the liquid-gas-dissolved gas 
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.6.3 Continuously Circulating System 

Figure 13.0 i s  a diagram of a continuously c i rcu la t ing  

system. 

chamber continuously, The urine,  however, i s  exposed t o  the  electrode 

only for par t  of the time. The volume of the  electrode chamber i s  

such that it represents  one t h i r d  the  volume of t he  e n t i r e  system. 

In  the  s i x  l i t e r  module envisioned, the electrode chamber volume i s  

2 l i t e rs .  

regimen then i s  40 l i t e r s /h r .  

I n  t h i s  system current i s  supplied t o  the e l ec t ro lys i s  

The c i rcu la t ion  r a t e  necessary t o  achieve the 3min/6min 

Thus, i n  t h i s  system, the ur ine flows through the  

electrode chamber at a r a t e  such that each l i t e r  resides i n  the 

chamber for 3 minutes during which time hypochlorite i s  generated. 

The p a r t i a l l y  electrolyzed ur ine then flows i n t o  the  react ion chamber 

where each l i t e r  resides f o r  six minutes. 

oxidation react ions a m  allowed t o  proceed. 

gases then flow through the gas-liquid phase separator  wherein the 

gases are bled o f f .  

e l e c t r o l y s i s  chamber f o r  another cycle. 

In  t h i s  chamber, the 

The ur ine  and entrained 

A t  t h i s  point the de-gassed ur ine re-enters  the  

The e l ec t ro lys i s  chamber i n  t h i s  system contains t e n  

electrode assemblies each 16.67 cm long, spaced equally apart on the 

centers ,  

The ins ide  dimensions of the cy l indr ica l  chamber a re  

16.67 cm i n  height by 12.36 cm diameter. 

6.3.1 Advantages of the System 

Since there  i s  constant removal of t he  gases developed, 

the system w i l l  operate e s sen t i a l ly  a t  atmospheric pressure.  

the construct ion may be lightened and seal ing becomes less of a problem. 

Thus, 

Further, there  will he no ill e f fec t s  due t o  inordinate  

d isso lu t ion  of C 0 2  i n  the urine.  
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Additionally,  but perhaps of minor im;?ortance, there 

i s  less of an expendi ture  requi red  f o r  e lectrodes then i n  the non- 

c i r c u l a t i n g  system. 

6.3.2 Disadvantages o f  the System 

The major disadvantage of t h i s  system is  the presence 

of the c i r c u l a t i n g  pump. 

In  add i t ion  t o  the  weight of the pump there i s  a 

penalty t o  be paid i n  the power required t o  run the pump motor. 

6.4 Comparison of the Elec t r ica l  Requirements of Both 
Systems. Exclusive of the Ultra-Violet  lam^ 

6.4.1 

6.4.1.1 

6.4.1.2 
6.4.1.3 

6.4.1.4 

6.4.2 

6.4.2.1 

6.4.2.2 

6.4.2.3 

6.4.2.4 

Non-Circulating System 

Cell Current P e r  Pulse: 200 amps/pulse 

Cell Voltage: 5.37 v o l t s  

Cell Power Requirements: 1,074 wat ts /pulse  

-.-. Tota l  Energy Required Per  Averzge Six L i t e r  Batch: - 
73.0 A H I l i t e r  x 6 l i t e r  
3.85 ef f ic iency  x 200 amp 1.074 x 

= 2,767.1 watt-hours 

Continuously Ci rcu la t ing  System 

Cell Current: 66.67 amps 

- C e l l  Voltage: 5.37 v o l t s  

Cell Power Requirements: 358 watts (cont inuous)  

Total  Energy Required Per Average S i x  L i t e r  Batch: 

2.767. i < .  . 
watts-hrs 

6.4.2.5 -- Additional Energy Consumption by Pump: Not ca lcu la ted  
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6 ..5 Recommended Module Design 

It i s  the authors opinion that the continuously c i r -  

culat ing system i s  the most promising. The continuous removal of 

evolved gases t o  avoid any pressure buildup is the most desirable  

feature of t h i s  system. 

fer  seems the more re l iable  method under weightless conditions. 

Further, t he  use of a pump f o r  l i qu id  t rans-  
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7.0 

7.1 

RECOMMENDATIONS FOR CONTINUED INYESTIGATIONS - 
Continued - Investigation of Cycling Regimen 

It i s  of cowse  desirable t o  obtain even grea te r  

current e f f ic ienc ies .  Cycling regimens should be fur ther  optimized. 

The durations and the  r a t i o  of t he  durations of t h e  on and off periods 

must be studied i n  more d e t a i l ,  as well as the d e s i r a b i l i t y  of using 

avai lable  cycle. 

7.2 Current Densitfes and t he  Ra t io ,  amp/ml 

Concornittant with the  continued study of cycling 

regimens should be t h e  study of the e f f ec t s  of current density and 

t h e  r a t i o ,  amps/ml. It i s  desirable  t o  u t i l i z e  t h e  lowest current 

dens i t i e s  possible from the standpoint of lowering t h e  voltage 

requirements, however, this f ac to r  is not independent but must be 

studied as a function of cycling regimens and t h e  r a t i o ,  amps/ml. 

The t o t a l  time required for t h e  e l ec t ro lys i s  i s  a 

function of t he  currerrt efficiency, the on/off time r a t i o  of t h e  

cycling regimen, and the  r a t i o ,  amp/ml. These parameters then, a r e  

l i m i t e d  i n  t h e  number of values they may assume.by the  maximum time 

ava i lab le  f o r  the e l ec t ro lys i s .  

The importance of obtaining r e l i a b l e  nitrogen analyses 

cannot be minimized. It i s  advisable I n  the fu ture  then t o  obtain 

r e p l i c a t e  analyses. 
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TABLE 1 .0  

FACTORS DETERMINING POWER EFFICIENCIES 

Voltage Factors 

PH 

N a C l  and C12 Concentrations 

Electrode Materials and Polarization Effects  

Current Density 

Electrode Spacing 

Temperature 

Current Efficiency Factors 

PH 

Current Density 

Electrode Spacing 

Temperature 

Mixing o r  Turbulence 

Reaction Rates 
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TABLE 2.0 

CONDUCTrn ' rY OF RANDOM URm SAMPLES 

Sample 
Normality of 

R( ohms) p( ohm-cm) N a C l  (Figure 2.0) 
_ _  

Urine 
(Two weeks old)  6.330 

Fresh Urine 5.440 
Electrolyzed 

Synthetic 

Urine 5 900 

Urine 6.820 

Fresh Urine 8 330 
Fresh Urine 6.630 

Fresh Urine 5.20 

Fresh Urine 4.92 

Fresh Urine 9.34 
Fresh Urine 6.17 

Fresh Urine 7.46 

Fresh Urine 6.84 

0 633 

0.540 

0 590 

0.682 

833 
.663 

.520 

.492 

934 
.617 
.746 

.684 

0.21 

0.24 

0.22 

0.19 

0.16 

0.19 

0.25 

0.27 

0.15 

0.22 

0.1'7 

0.18 



TABLE 3.0 

INDO-PHENOL ANALYSES FOR TNE NITROGEN CONTE5pT OF ELECTROLYZED 

URINE-SALT SOLUTIONS USING VARIOUS RATES OF URINE ADDITION I N  THE 

CONTINUOUS ADDIT108 "BREAK-POINT" NETHOD 

$ of  Theore t i ca l  Time Urea Nitro en i n  Chlorine 
Addition Rate (min) Solu t ion  7 ppm) Concentration ( ppm) 

81 

81 

81 

81 

24 

24 

24 

24 

143 

143 

143 

I 4 3  

40 

10 

20 

30 

40 

4 
8 

12 

16 

0 

1 

~ ~~~~ 

0 875 

0.916 
0.666 

708 

68 

1.32 

1.20 

0.76 

2.11 

3.98 

7.96 

5.47 

110 

110 

110 

110 

320 

100 

80 

30 

1 

1 

1 

1 
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TABLE 4.0 

E X " D E D  RUN, CObTTINUOUS ADDITION 

Sample N Concentration i n  ppm 

CELL 

Cell Efficiency 

Calculated Calculated 
Maximum at Minimum at  

Efficiency Efficiency 
Zero 1008 

Found 

Feed Stock -_-- 
90 minute 

sample 1295 

150 minute 
sample 1376 

Zero 

Zero  

1,390 PPm 

600 ppm 

840 ppm 
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TABLE 5.0 

CONDITIONS FOR CYCLINQ REGITG3 EXPERIMENTS 

T o t a l  Current Maximum 
Accumulated Current Densit3 C e l l  

Experiments (minute) "on" Time amps amps/cm Temperature 

A 

B 

C 

D 

90 on 
zero o f f  

91 min 1.5 1.2 8goC 

5 on 95 min 1.5 1 .2  80°C 
5 o f f  

I5 on 
15 o f f  

3 on 
6 off 

90 min 1.5 

87 min 1.5 

1.2 

1.2 

8 5 O C  

7 2 O C  
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TABLE 6.0 

* CYCLING REOUVLEN EXPERIMENTS; NITRWEBT ANALYSES AND EEFICIENCIES 

Current 
ampere-min - &N$ Efficiencr 

Experiment Raw Electrolyzed consumed Theoretical Actual P 
- 

A 13010 5100 136 5 93 3% 60.8 65 

B 13010 4665 142.5 97.4s 64.1 66 

C 13010 3600 135 0 9 2 . 8  72.3 7% 
D 13010 3123 131.5 89 8% 76.0 85 

Ideal 13010 Zero 146.4 -- _- -- 
Condit10nl3 



TABLE 7.0 

CYCLICAL NATURE OF THE pH IN THE INTERMITTENT CURRENT EXPERIMENTS 

Tlse of Read9j3g Experiment B Experiment C Experiment D 

End of F i r s t  "On" 
Period 

End of First " O f f "  
Period 

9.0 

7.0 

7.0 

6*5  

8.0 

7 - 6  

End of Mid-Point "On" 
Period 

End of Mid-Point " O f f "  
Period 

7.2 

7.0 

7.2  

7.0 

8.1 

7.0 

End of next  t o  las t  
"On" Period 

End of last  "Ofr '"  
per iod 

7.2 

6.8 

7 . 2  

'( .o 

7.1 

7.0 
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TABLE 9.0 

COMPOSITION OF GASES EVOLVED DURING URINE ELECTROLYSIS 

Constituents 

- 

Synthetic Real 

Concent r a t ion  9 Volume/Volume* 

Urine Urine 

Nitrogen 

Oxygen 

Argon 

Carbon Dioxide 

Hydrogen 

Hydrocarbon 

19.5 14.7 

1.92 8.17 

.067 .10 

19.5 14.5 

59 62 

.036** .87*** 

* 
These mass spectrometric analyses were performed by: 
Gollob Analytical Service, Inc. , 47 Indus t r ia l  Road 
Berkeley Heights, New Jersey. 

** 
Chlorinated hydrocarbon containing two chlorine atoms, 
mjor peaks a t  masses 61, 63, 81, and 83. 

Chlorinated hydrocarbon with probably three chlor ines  
and possibly a fluorine,  major peaks at  masses 116, 
101, 86, 67, and 47. 

*** 
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UNIT ELECTRODE CONFIGURATION FOR ELECTROLYSIS MODULE 

FIGURE 10.0 
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APPENDIX I 

A. PHYSICAL AND CmfICAL STANDARDS FOR DRINKING WATER 

1946 United States Public Health Service Drinking 

Water Standards. 

The elements and compounds l i s ted  m a y  be present, but 

only t o  the maximum amount l imited.  

Turbidity 
Color 

PH 

Solids 

Chloride ion 

Copper 

Ma nesiwn 

Zinc 

Sul fa te  ion 

10 pm ( S i l i c a  sca le )  
20 &atinum-cobalt sca le  
Or 15 chloroplat inate  units) 

5.5-8.3 

0.05% 

Phenolic Compounds 0.001 ppm as phenol 

Iron and Manganese 
( together)  

0.3 ppm 
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i I - 
B. : BACTERIOLOGIC -.----- R E Q U 1 R E " T S  FOR DRINKING WATER 

/ 

(United States  Pttblic Hzalth Service and American 
I 

Public Health Association S tmdard j  

The accepted star6ard f c r  coliform Sac tcr ia  i s  a 

maximum of 2.2 coliforms per  100 ta l ,  the preferred standard i s  zero 

colioforms.Thls standard i s  considered t o  be met when f i v e  10 ml 

port ions of water are examined by the fermentation tube method and 

I gas i s  found i n  none of t he  f i v e  tubes. 

--. Presumptive Test for E. Coli 

Add f i v e  1 0 - m l  portions of water t o  f i v e  10 m l  por t ions 

of double s t rength Standard Methods Lactose Broth (No. B4, dehydrated), 

o r  laury l  t r m t o s e  broth i n  fermentation tubes.  

I 

1 

If water i s  suspected of being polluted,  m&e higher 

d i lu t ions  and add f i v e  1-ml portions of each d i lu t ion  t o  f i v e  10 m l  

of single s t rength Standard Methods Lactose Broth, so  that negative 

r e s u l t s  w i l l  be obtained i n  the highest d i lu t ions .  

0 . 5 O C .  Incubate a l l  tubes at  3 5 O C  

The presence of  fermentation with gas i n  these tubes I 

, 
within 24 (i2) hours i s  presumptive evidence of the presence of 

Coliform organisms and i s  a "Posit ive Presumptive Test." 1 
If no gas i s  formed i n  24 (r) hours, continue the 

incubation t o  48 (f3) hours. 

any quant i ty  a t  the  end of  the second, but not t he  first, 24 hour 

period, the tes t  i s  considered as doubtf i l  and the presence of 

If fermentation w i t h  gas is present i n  

I 

Coliform organisms should be confirmed by t h e  use of Standard Methods 

b r i l l i a n t  green lac tose  b i l e  broth, endo medium o r  eosin methylene 

blue agar plates. 
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* It i s  desirable  that the tubes i n  which any gas found 

i n  24 (f2) hours o r  48 (f3) hours be subjected t o  confirmatory t e s t s .  

Absence of gas formation after 48 hours incubation a t  

25 t o  3 7 O C  cons t i tu tes  a negative test which requires no f'urther 

confirmation. 

A second standard method for determining t h e  Coliform 

group i s  t h e  membrane f i l t e r  technique. 

method. 

This is a d i r e c t  count 

The procedure i s  described below. 

(a) Duplicate 100 - 500 ml volumes of t h e  test  water 

a r e  used. 

(b) These are vacuum (or  pressure) f i l t e r e d  under 

s t e r i l e  conditions through autoclaved f i l t e r  membranes. 

0.05 t o  0.45 microns. 

Pore s i z e  

(c )  The membrane f i l t e r s  a r e  placed r ight  s ide  up upon 

previously prepared absorbent pads wetted with cu l ture  media. (Endo 

agar or  s o s b  methylene blue agar is recommended.) 

(d) These a re  t h e  incubated 20 2 hrs  at 35OC * 0.5OC 
at 100% R-H. The samples a re  i n  an inverted posit ion.  

(e)  The upper membrane surfaces a re  then examined f o r  

A wide the dark purplish-green metall ic appearing coliform colonies. 

f i e ld  microscope w i t h  a magnification of 10-15 diameters i s  used. 
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